Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Reading Isn't Believing: Adversarial Attacks On Multi-Modal Neurons (2103.10480v1)

Published 18 Mar 2021 in cs.LG, cs.CL, and cs.CV

Abstract: With Open AI's publishing of their CLIP model (Contrastive Language-Image Pre-training), multi-modal neural networks now provide accessible models that combine reading with visual recognition. Their network offers novel ways to probe its dual abilities to read text while classifying visual objects. This paper demonstrates several new categories of adversarial attacks, spanning basic typographical, conceptual, and iconographic inputs generated to fool the model into making false or absurd classifications. We demonstrate that contradictory text and image signals can confuse the model into choosing false (visual) options. Like previous authors, we show by example that the CLIP model tends to read first, look later, a phenomenon we describe as reading isn't believing.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.