Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Porting a sparse linear algebra math library to Intel GPUs (2103.10116v1)

Published 18 Mar 2021 in cs.DC, cs.MS, and cs.PF

Abstract: With the announcement that the Aurora Supercomputer will be composed of general purpose Intel CPUs complemented by discrete high performance Intel GPUs, and the deployment of the oneAPI ecosystem, Intel has committed to enter the arena of discrete high performance GPUs. A central requirement for the scientific computing community is the availability of production-ready software stacks and a glimpse of the performance they can expect to see on Intel high performance GPUs. In this paper, we present the first platform-portable open source math library supporting Intel GPUs via the DPC++ programming environment. We also benchmark some of the developed sparse linear algebra functionality on different Intel GPUs to assess the efficiency of the DPC++ programming ecosystem to translate raw performance into application performance. Aside from quantifying the efficiency within the hardware-specific roofline model, we also compare against routines providing the same functionality that ship with Intel's oneMKL vendor library.

Citations (5)

Summary

We haven't generated a summary for this paper yet.