2000 character limit reached
Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers (2103.09301v1)
Published 16 Mar 2021 in cs.AR
Abstract: Transformers have transformed the field of natural language processing. This performance is largely attributed to the use of stacked self-attention layers, each of which consists of matrix multiplies as well as softmax operations. As a result, unlike other neural networks, the softmax operation accounts for a significant fraction of the total run-time of Transformers. To address this, we propose Softermax, a hardware-friendly softmax design. Softermax consists of base replacement, low-precision softmax computations, and an online normalization calculation. We show Softermax results in 2.35x the energy efficiency at 0.90x the size of a comparable baseline, with negligible impact on network accuracy.