Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dense Interaction Learning for Video-based Person Re-identification (2103.09013v3)

Published 16 Mar 2021 in cs.CV

Abstract: Video-based person re-identification (re-ID) aims at matching the same person across video clips. Efficiently exploiting multi-scale fine-grained features while building the structural interaction among them is pivotal for its success. In this paper, we propose a hybrid framework, Dense Interaction Learning (DenseIL), that takes the principal advantages of both CNN-based and Attention-based architectures to tackle video-based person re-ID difficulties. DenseIL contains a CNN encoder and a Dense Interaction (DI) decoder. The CNN encoder is responsible for efficiently extracting discriminative spatial features while the DI decoder is designed to densely model spatial-temporal inherent interaction across frames. Different from previous works, we additionally let the DI decoder densely attends to intermediate fine-grained CNN features and that naturally yields multi-grained spatial-temporal representation for each video clip. Moreover, we introduce Spatio-TEmporal Positional Embedding (STEP-Emb) into the DI decoder to investigate the positional relation among the spatial-temporal inputs. Our experiments consistently and significantly outperform all the state-of-the-art methods on multiple standard video-based person re-ID datasets.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube