Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Reinforcement Learning Framework for Stochastic Spaceflight Campaign Design (2103.08981v2)

Published 16 Mar 2021 in cs.LG, cs.SY, eess.SY, and math.OC

Abstract: This paper develops a hierarchical reinforcement learning architecture for multimission spaceflight campaign design under uncertainty, including vehicle design, infrastructure deployment planning, and space transportation scheduling. This problem involves a high-dimensional design space and is challenging especially with uncertainty present. To tackle this challenge, the developed framework has a hierarchical structure with reinforcement learning and network-based mixed-integer linear programming (MILP), where the former optimizes campaign-level decisions (e.g., design of the vehicle used throughout the campaign, destination demand assigned to each mission in the campaign), whereas the latter optimizes the detailed mission-level decisions (e.g., when to launch what from where to where). The framework is applied to a set of human lunar exploration campaign scenarios with uncertain in situ resource utilization performance as a case study. The main value of this work is its integration of the rapidly growing reinforcement learning research and the existing MILP-based space logistics methods through a hierarchical framework to handle the otherwise intractable complexity of space mission design under uncertainty. This unique framework is expected to be a critical steppingstone for the emerging research direction of artificial intelligence for space mission design.

Citations (12)

Summary

We haven't generated a summary for this paper yet.