General Reiteration Theorems for $\mathcal{R}$ and $\mathcal{L}$ Clases: Mixed Interpolation of $\mathcal{R}$ and $\mathcal{L}$-spaces (2103.08956v1)
Abstract: Given $E_0, E_1, F_0, F_1, E$ rearrangement invariant function spaces, $a_0$, $a_1$, $b_0$, $b_1$, $b$ slowly varying functions and $0< \theta_0<\theta_1<1$, we characterize the interpolation spaces $$(\overline{X}{\mathcal R}{\theta_0,b_0,E_0,a_0,F_0}, \overline{X}{\mathcal R}{\theta_1, b_1,E_1,a_1,F_1}){\theta,b,E},\quad (\overline{X}{\mathcal L}{\theta_0, b_0,E_0,a_0,F_0}, \overline{X}{\mathcal L}{\theta_1,b_1,E_1,a_1,F_1}){\theta,b,E}$$ and $$(\overline{X}{\mathcal R}{\theta_0,b_0,E_0,a_0,F_0}, \overline{X}{\mathcal L}{\theta_1, b_1,E_1,a_1,F_1}){\theta,b,E},\quad (\overline{X}{\mathcal L}{\theta_0, b_0,E_0,a_0,F_0}, \overline{X}{\mathcal R}{\theta_1,b_1,E_1,a_1,F_1}){\theta,b,E},$$ for all possible values of $\theta\in[0,1]$. Applications to interpolation identities for grand and small Lebesgue spaces, Gamma spaces and $A$ and $B$-type spaces are given.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.