Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative Learning for Probabilistic Context-Free Grammars based on Generalized H-Criterion (2103.08656v1)

Published 15 Mar 2021 in cs.CL and cs.LG

Abstract: We present a formal framework for the development of a family of discriminative learning algorithms for Probabilistic Context-Free Grammars (PCFGs) based on a generalization of criterion-H. First of all, we propose the H-criterion as the objective function and the Growth Transformations as the optimization method, which allows us to develop the final expressions for the estimation of the parameters of the PCFGs. And second, we generalize the H-criterion to take into account the set of reference interpretations and the set of competing interpretations, and we propose a new family of objective functions that allow us to develop the expressions of the estimation transformations for PCFGs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.