Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Neural Network Based Ensemble learning Algorithms for the healthcare system (diagnosis of chronic diseases)

Published 15 Mar 2021 in cs.LG and cs.AI | (2103.08182v1)

Abstract: learning algorithms. In this paper, we review the classification algorithms used in the health care system (chronic diseases) and present the neural network-based Ensemble learning method. We briefly describe the commonly used algorithms and describe their critical properties. Materials and Methods: In this study, modern classification algorithms used in healthcare, examine the principles of these methods and guidelines, and to accurately diagnose and predict chronic diseases, superior machine learning algorithms with the neural network-based ensemble learning Is used. To do this, we use experimental data, real data on chronic patients (diabetes, heart, cancer) available on the UCI site. Results: We found that group algorithms designed to diagnose chronic diseases can be more effective than baseline algorithms. It also identifies several challenges to further advancing the classification of machine learning in the diagnosis of chronic diseases. Conclusion: The results show the high performance of the neural network-based Ensemble learning approach for the diagnosis and prediction of chronic diseases, which in this study reached 98.5, 99, and 100% accuracy, respectively.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.