Papers
Topics
Authors
Recent
2000 character limit reached

R-GSN: The Relation-based Graph Similar Network for Heterogeneous Graph (2103.07877v3)

Published 14 Mar 2021 in cs.AI

Abstract: Heterogeneous graph is a kind of data structure widely existing in real life. Nowadays, the research of graph neural network on heterogeneous graph has become more and more popular. The existing heterogeneous graph neural network algorithms mainly have two ideas, one is based on meta-path and the other is not. The idea based on meta-path often requires a lot of manual preprocessing, at the same time it is difficult to extend to large scale graphs. In this paper, we proposed the general heterogeneous message passing paradigm and designed R-GSN that does not need meta-path, which is much improved compared to the baseline R-GCN. Experiments have shown that our R-GSN algorithm achieves the state-of-the-art performance on the ogbn-mag large scale heterogeneous graph dataset.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube