Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Anomaly Detection in Gravitational Waves data using Convolutional AutoEncoders (2103.07688v2)

Published 13 Mar 2021 in astro-ph.IM and gr-qc

Abstract: As of this moment, fifty gravitational waves (GW) detections have been announced, thanks to the observational efforts of the LIGO-Virgo Collaboration, working with the Advanced LIGO and the Advanced Virgo interferometers. The detection of signals is complicated by the noise-dominated nature of the data. Conventional approaches in GW detection procedures require either precise knowledge of the GW waveform in the context of matched filtering searches or coincident analysis of data from multiple detectors. Furthermore, the analysis is prone to contamination by instrumental or environmental artifacts called glitches which either mimic astrophysical signals or reduce the overall quality of data. In this paper, we propose an alternative generic method of studying GW data based on detecting anomalies. The anomalies we study are transient signals, different from the slow non-stationary noise of the detector. Presented in the manuscript anomalies are mostly based on the GW emitted by the mergers of binary black hole systems. However, the presented study of anomalies is not limited only to GW alone, but also includes glitches occurring in the real LIGO/Virgo dataset available at the Gravitational Waves Open Science Center.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.