Papers
Topics
Authors
Recent
2000 character limit reached

Heuristic Algorithms for Best Match Graph Editing

Published 10 Mar 2021 in math.CO, cs.DM, and q-bio.PE | (2103.07280v1)

Abstract: Best match graphs (BMGs) are a class of colored digraphs that naturally appear in mathematical phylogenetics and can be approximated with the help of similarity measures between gene sequences, albeit not without errors. The corresponding graph editing problem can be used as a means of error correction. Since the arc set modification problems for BMGs are NP-complete, efficient heuristics are needed if BMGs are to be used for the practical analysis of biological sequence data. Since BMGs have a characterization in terms of consistency of a certain set of rooted triples, we consider heuristics that operate on triple sets. As an alternative, we show that there is a close connection to a set partitioning problem that leads to a class of top-down recursive algorithms that are similar to Aho's supertree algorithm and give rise to BMG editing algorithms that are consistent in the sense that they leave BMGs invariant. Extensive benchmarking shows that community detection algorithms for the partitioning steps perform best for BMG editing.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.