Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Architecture Search based on Cartesian Genetic Programming Coding Method (2103.07173v5)

Published 12 Mar 2021 in cs.NE

Abstract: Neural architecture search (NAS) is a hot topic in the field of automated machine learning and outperforms humans in designing neural architectures on quite a few machine learning tasks. Motivated by the natural representation form of neural networks by the Cartesian genetic programming (CGP), we propose an evolutionary approach of NAS based on CGP, called CGPNAS, to solve sentence classification task. To evolve the architectures under the framework of CGP, the operations such as convolution are identified as the types of function nodes of CGP, and the evolutionary operations are designed based on Evolutionary Strategy. The experimental results show that the searched architectures are comparable with the performance of human-designed architectures. We verify the ability of domain transfer of our evolved architectures. The transfer experimental results show that the accuracy deterioration is lower than 2-5%. Finally, the ablation study identifies the Attention function as the single key function node and the linear transformations along could keep the accuracy similar with the full evolved architectures, which is worthy of investigation in the future.

Summary

We haven't generated a summary for this paper yet.