Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning by Teaching, with Application to Neural Architecture Search (2103.07009v1)

Published 11 Mar 2021 in cs.LG and cs.AI

Abstract: In human learning, an effective skill in improving learning outcomes is learning by teaching: a learner deepens his/her understanding of a topic by teaching this topic to others. In this paper, we aim to borrow this teaching-driven learning methodology from humans and leverage it to train more performant machine learning models, by proposing a novel ML framework referred to as learning by teaching (LBT). In the LBT framework, a teacher model improves itself by teaching a student model to learn well. Specifically, the teacher creates a pseudo-labeled dataset and uses it to train a student model. Based on how the student performs on a validation dataset, the teacher re-learns its model and re-teaches the student until the student achieves great validation performance. Our framework is based on three-level optimization which contains three stages: teacher learns; teacher teaches student; teacher re-learns based on how well the student performs. A simple but efficient algorithm is developed to solve the three-level optimization problem. We apply LBT to search neural architectures on CIFAR-10, CIFAR-100, and ImageNet. The efficacy of our method is demonstrated in various experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Parth Sheth (1 paper)
  2. Yueyu Jiang (1 paper)
  3. Pengtao Xie (86 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.