Papers
Topics
Authors
Recent
2000 character limit reached

The Efficient Shrinkage Path: Maximum Likelihood of Minimum MSE Risk

Published 9 Mar 2021 in stat.ME, stat.CO, and stat.ML | (2103.05161v5)

Abstract: A new generalized ridge regression shrinkage path is proposed that is as short as possible under the restriction that it must pass through the vector of regression coefficient estimators that make the overall Optimal Variance-Bias Trade-Off under Normal distribution-theory. Five distinct types of ridge TRACE displays plus other graphics for this efficient path are motivated and illustrated here. These visualizations provide invaluable data-analytic insights and improved self-confidence to researchers and data scientists fitting linear models to ill-conditioned (confounded) data.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.