Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels (2103.04685v1)

Published 8 Mar 2021 in cs.LG

Abstract: Positive-unlabeled learning refers to the process of training a binary classifier using only positive and unlabeled data. Although unlabeled data can contain positive data, all unlabeled data are regarded as negative data in existing positive-unlabeled learning methods, which resulting in diminishing performance. We provide a new perspective on this problem -- considering unlabeled data as noisy-labeled data, and introducing a new formulation of PU learning as a problem of joint optimization of noisy-labeled data. This research presents a methodology that assigns initial pseudo-labels to unlabeled data which is used as noisy-labeled data, and trains a deep neural network using the noisy-labeled data. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art methods on several benchmark datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.