Papers
Topics
Authors
Recent
Search
2000 character limit reached

Wave focusing and related multiple dispersion transitions in plane Poiseuille flows

Published 8 Mar 2021 in physics.flu-dyn, cs.NA, and math.NA | (2103.04650v1)

Abstract: Motivated by the recent discovery of a dispersive-to-nondispersive transition for linear waves in shear flows, we accurately explored the wavenumber-Reynolds number parameter map of the plane Poiseuille flow, in the limit of least-damped waves. We have discovered the existence of regions of the map where the dispersion and propagation features vary significantly from their surroundings. These regions are nested in the dispersive, low-wavenumber part of the map. This complex dispersion scenario demonstrates the existence of linear dispersive focusing in wave envelopes evolving out of an initial, spatially localized, three-dimensional perturbation. An asymptotic wave packet's representation, based on the saddle-point method, allows to enlighten the nature of the packet's morphology, in particular the arrow-shaped structure and spatial spreading rates. A correlation is also highlighted between the regions of largest dispersive focusing and the regions which are most subject to strong nonlinear coupling in observations.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.