FEDS -- Filtered Edit Distance Surrogate (2103.04635v2)
Abstract: This paper proposes a procedure to train a scene text recognition model using a robust learned surrogate of edit distance. The proposed method borrows from self-paced learning and filters out the training examples that are hard for the surrogate. The filtering is performed by judging the quality of the approximation, using a ramp function, enabling end-to-end training. Following the literature, the experiments are conducted in a post-tuning setup, where a trained scene text recognition model is tuned using the learned surrogate of edit distance. The efficacy is demonstrated by improvements on various challenging scene text datasets such as IIIT-5K, SVT, ICDAR, SVTP, and CUTE. The proposed method provides an average improvement of $11.2 \%$ on total edit distance and an error reduction of $9.5\%$ on accuracy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.