Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum K-nearest neighbor classification algorithm based on Hamming distance

Published 7 Mar 2021 in quant-ph | (2103.04253v2)

Abstract: K-nearest neighbor classification algorithm is one of the most basic algorithms in machine learning, which determines the sample's category by the similarity between samples. In this paper, we propose a quantum K-nearest neighbor classification algorithm with Hamming distance. In this algorithm, quantum computation is firstly utilized to obtain Hamming distance in parallel. Then, a core sub-algorithm for searching the minimum of unordered integer sequence is presented to find out the minimum distance. Based on these two sub-algorithms, the whole quantum frame of K-nearest neighbor classification algorithm is presented. At last, it is shown that the proposed algorithm can achieve a quadratical speedup by analyzing its time complexity briefly.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.