Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
181 tokens/sec
2000 character limit reached

Quantum K-nearest neighbor classification algorithm based on Hamming distance (2103.04253v2)

Published 7 Mar 2021 in quant-ph

Abstract: K-nearest neighbor classification algorithm is one of the most basic algorithms in machine learning, which determines the sample's category by the similarity between samples. In this paper, we propose a quantum K-nearest neighbor classification algorithm with Hamming distance. In this algorithm, quantum computation is firstly utilized to obtain Hamming distance in parallel. Then, a core sub-algorithm for searching the minimum of unordered integer sequence is presented to find out the minimum distance. Based on these two sub-algorithms, the whole quantum frame of K-nearest neighbor classification algorithm is presented. At last, it is shown that the proposed algorithm can achieve a quadratical speedup by analyzing its time complexity briefly.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.