Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum K-medians Algorithm Using Parallel Euclidean Distance Estimator

Published 21 Dec 2020 in quant-ph | (2012.11139v1)

Abstract: Quantum machine learning, though in its initial stage, has demonstrated its potential to speed up some of the costly machine learning calculations when compared to the existing classical approaches. Among the challenging subroutines, computing distance between with the large and high-dimensional data sets by the classical k-medians clustering algorithm is one of them. To tackle this challenge, this paper proposes an efficient quantum k-medians clustering algorithm using the powerful quantum Euclidean estimator algorithm. The proposed quantum k-medians algorithm has provided an exponential speed up as compared to the classical version of it. If and only if we allow the input and the output vectors to be quantum states. The proposed algorithm implementation handled in python with the help of third-party module known as QISKit. The implemented quantum algorithm was executed on the IBM Quantum simulators through cloud. The results from the experiment and simulation suggest that quantum distance estimator algorithms could give benefits for other distance-based machine learning algorithms like k-nearest neighbor classification, support vector machine, hierarchical clustering and k-means clustering. This work sheds light on the bright future of the age of big data making use of exponential speed up provided by quantum theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.