Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Application of Image-to-Image Translation: Chromosome Straightening Framework by Learning from a Single Image (2103.02835v3)

Published 4 Mar 2021 in cs.CV and cs.AI

Abstract: In medical imaging, chromosome straightening plays a significant role in the pathological study of chromosomes and in the development of cytogenetic maps. Whereas different approaches exist for the straightening task, typically geometric algorithms are used whose outputs are characterized by jagged edges or fragments with discontinued banding patterns. To address the flaws in the geometric algorithms, we propose a novel framework based on image-to-image translation to learn a pertinent mapping dependence for synthesizing straightened chromosomes with uninterrupted banding patterns and preserved details. In addition, to avoid the pitfall of deficient input chromosomes, we construct an augmented dataset using only one single curved chromosome image for training models. Based on this framework, we apply two popular image-to-image translation architectures, U-shape networks and conditional generative adversarial networks, to assess its efficacy. Experiments on a dataset comprised of 642 real-world chromosomes demonstrate the superiority of our framework, as compared to the geometric method in straightening performance, by rendering realistic and continued chromosome details. Furthermore, our straightened results improve the chromosome classification by 0.98%-1.39% mean accuracy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.