Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Importance of Sampling in Training GCNs: Tighter Analysis and Variance Reduction (2103.02696v2)

Published 3 Mar 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Graph Convolutional Networks (GCNs) have achieved impressive empirical advancement across a wide variety of semi-supervised node classification tasks. Despite their great success, training GCNs on large graphs suffers from computational and memory issues. A potential path to circumvent these obstacles is sampling-based methods, where at each layer a subset of nodes is sampled. Although recent studies have empirically demonstrated the effectiveness of sampling-based methods, these works lack theoretical convergence guarantees under realistic settings and cannot fully leverage the information of evolving parameters during optimization. In this paper, we describe and analyze a general doubly variance reduction schema that can accelerate any sampling method under the memory budget. The motivating impetus for the proposed schema is a careful analysis of the variance of sampling methods where it is shown that the induced variance can be decomposed into node embedding approximation variance (zeroth-order variance) during forward propagation and layerwise-gradient variance (first-order variance) during backward propagation. We theoretically analyze the convergence of the proposed schema and show that it enjoys an $\mathcal{O}(1/T)$ convergence rate. We complement our theoretical results by integrating the proposed schema in different sampling methods and applying them to different large real-world graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Weilin Cong (12 papers)
  2. Morteza Ramezani (5 papers)
  3. Mehrdad Mahdavi (50 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.