Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

General Feasibility Bounds for Sample Average Approximation via Vapnik-Chervonenkis Dimension (2103.01324v3)

Published 1 Mar 2021 in math.OC

Abstract: We investigate the feasibility of sample average approximation (SAA) for general stochastic optimization problems, including two-stage stochastic programming without the relatively complete recourse assumption. Instead of analyzing problems with specific structures, we utilize results from the Vapnik-Chervonenkis (VC) dimension and Probably Approximately Correct learning to provide a general framework that offers explicit feasibility bounds for SAA solutions under minimal structural or distributional assumption. We show that, as long as the hypothesis class formed by the feasbible region has a finite VC dimension, the infeasibility of SAA solutions decreases exponentially with computable rates and explicitly identifiable accompanying constants. We demonstrate how our bounds apply more generally and competitively compared to existing results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.