Papers
Topics
Authors
Recent
Search
2000 character limit reached

Krylov solvability under perturbations of abstract inverse linear problems

Published 26 Feb 2021 in math.FA, cs.NA, and math.NA | (2102.13626v1)

Abstract: When a solution to an abstract inverse linear problem on Hilbert space is approximable by finite linear combinations of vectors from the cyclic subspace associated with the datum and with the linear operator of the problem, the solution is said to be a Krylov solution, i.e., it belongs to the Krylov subspace of the problem. Krylov solvability of the inverse problem allows for solution approximations that, in applications, correspond to the very efficient and popular Krylov subspace methods. We study here the possible behaviours of persistence, gain, or loss of Krylov solvability under suitable small perturbations of the inverse problem -- the underlying motivations being the stability or instability of Krylov methods under small noise or uncertainties, as well as the possibility to decide a priori whether an inverse problem is Krylov solvable by investigating a potentially easier, perturbed problem. We present a whole scenario of occurrences in the first part of the work. In the second, we exploit the weak gap metric induced, in the sense of Hausdorff distance, by the Hilbert weak topology, in order to conveniently monitor the distance between perturbed and unperturbed Krylov subspaces.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.