Open problems and perspectives on solving Friedrichs systems by Krylov approximation
Abstract: We set up, at the abstract Hilbert space setting, the general question on when an inverse linear problem induced by an operator of Friedrichs type admits solutions belonging to (the closure of) the Krylov subspace associated to such operator. Such Krylov solvability of abstract Friedrichs systems allows to predict when, for concrete differential inverse problems, truncation algorithms can or cannot reproduce the exact solutions in terms of approximants from the Krylov subspace.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.