Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs) (2102.12470v2)

Published 24 Feb 2021 in cs.LG and stat.ML

Abstract: It is generally recognized that finite learning rate (LR), in contrast to infinitesimal LR, is important for good generalization in real-life deep nets. Most attempted explanations propose approximating finite-LR SGD with Ito Stochastic Differential Equations (SDEs), but formal justification for this approximation (e.g., (Li et al., 2019)) only applies to SGD with tiny LR. Experimental verification of the approximation appears computationally infeasible. The current paper clarifies the picture with the following contributions: (a) An efficient simulation algorithm SVAG that provably converges to the conventionally used Ito SDE approximation. (b) A theoretically motivated testable necessary condition for the SDE approximation and its most famous implication, the linear scaling rule (Goyal et al., 2017), to hold. (c) Experiments using this simulation to demonstrate that the previously proposed SDE approximation can meaningfully capture the training and generalization properties of common deep nets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhiyuan Li (304 papers)
  2. Sadhika Malladi (17 papers)
  3. Sanjeev Arora (93 papers)
Citations (74)

Summary

We haven't generated a summary for this paper yet.