Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Brain Waves Analysis Via a Non-parametric Bayesian Mixture of Autoregressive Kernels (2102.11971v3)

Published 23 Feb 2021 in stat.ME

Abstract: The standard approach to analyzing brain electrical activity is to examine the spectral density function (SDF) and identify predefined frequency bands that have the most substantial relative contributions to the overall variance of the signal. However, a limitation of this approach is that the precise frequency and bandwidth of oscillations vary with cognitive demands. Thus they should not be arbitrarily defined a priori in an experiment. In this paper, we develop a data-driven approach that identifies (i) the number of prominent peaks, (ii) the frequency peak locations, and (iii) their corresponding bandwidths (or spread of power around the peaks). We propose a Bayesian mixture auto-regressive decomposition method (BMARD), which represents the standardized SDFas a Dirichlet process mixture based on a kernel derived from second-order auto-regressive processes which completely characterize the location (peak)and scale (bandwidth) parameters. We present a Metropolis-Hastings within Gibbs algorithm to sample from the posterior distribution of the mixture parameters. Simulation studies demonstrate the robustness and performance of the BMARD method. Finally, we use the proposed BMARD method to analyze local field potential (LFP) activity from the hippocampus of laboratory rats across different conditions in a non-spatial sequence memory experiment to identify the most interesting frequency bands and examine the link between specific patterns of activity and trial-specific cognitive demands.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube