Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace-Based Feature Fusion From Hyperspectral And Multispectral Image For Land Cover Classification (2102.11228v2)

Published 22 Feb 2021 in eess.IV and cs.CV

Abstract: In remote sensing, hyperspectral (HS) and multispectral (MS) image fusion have emerged as a synthesis tool to improve the data set resolution. However, conventional image fusion methods typically degrade the performance of the land cover classification. In this paper, a feature fusion method from HS and MS images for pixel-based classification is proposed. More precisely, the proposed method first extracts spatial features from the MS image using morphological profiles. Then, the feature fusion model assumes that both the extracted morphological profiles and the HS image can be described as a feature matrix lying in different subspaces. An algorithm based on combining alternating optimization (AO) and the alternating direction method of multipliers (ADMM) is developed to solve efficiently the feature fusion problem. Finally, extensive simulations were run to evaluate the performance of the proposed feature fusion approach for two data sets. In general, the proposed approach exhibits a competitive performance compared to other feature extraction methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.