Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Comparison between different methods of model selection in cosmology (2102.10671v1)

Published 21 Feb 2021 in astro-ph.CO and gr-qc

Abstract: There are several methods for model selection in cosmology which have at least two major goals, that of finding the correct model or predicting well. In this work we discuss through a study of well-known model selection methods like Akaike information criterion (AIC), Bayesian information criterion (BIC), deviance information criterion (DIC) and Bayesian evidence, how these different goals are pursued in each paradigm. We also apply another method for model selection which less seen in cosmological literature, the Cross-validation method. Using these methods we will compare two different scenarios in cosmology, $\Lambda$CDM model and dynamical dark energy. We show that each of the methods tends to different results in model selection. While BIC and Bayesian evidence overrule the dynamical dark energy scenarios with 2 or 3 extra degree of freedom, the DIC and cross-validation method prefer these dynamical models to $\Lambda$CDM model. Assuming the numerical results of different analysis and combining cosmological and statistical aspects of the subject, we propose cross-validation as an interesting method for model selection in cosmology that can lead to different results in comparison with usual methods of model selection.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.