Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CheXseg: Combining Expert Annotations with DNN-generated Saliency Maps for X-ray Segmentation (2102.10484v2)

Published 21 Feb 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Medical image segmentation models are typically supervised by expert annotations at the pixel-level, which can be expensive to acquire. In this work, we propose a method that combines the high quality of pixel-level expert annotations with the scale of coarse DNN-generated saliency maps for training multi-label semantic segmentation models. We demonstrate the application of our semi-supervised method, which we call CheXseg, on multi-label chest X-ray interpretation. We find that CheXseg improves upon the performance (mIoU) of fully-supervised methods that use only pixel-level expert annotations by 9.7% and weakly-supervised methods that use only DNN-generated saliency maps by 73.1%. Our best method is able to match radiologist agreement on three out of ten pathologies and reduces the overall performance gap by 57.2% as compared to weakly-supervised methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.