Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Measuring the Stability of Learned Features (2102.10388v1)

Published 20 Feb 2021 in stat.CO

Abstract: Many modern datasets don't fit neatly into $n \times p$ matrices, but most techniques for measuring statistical stability expect rectangular data. We study methods for stability assessment on non-rectangular data, using statistical learning algorithms to extract rectangular latent features. We design controlled simulations to characterize the power and practicality of competing approaches. This motivates new strategies for visualizing feature stability. Our stability curves supplement the direct analysis, providing information about the reliability of inferences based on learned features. Finally, we illustrate our approach using a spatial proteomics dataset, where machine learning tools can augment the scientist's workflow, but where guarantees of statistical reproducibility are still central. Our raw data, packaged code, and experimental outputs are publicly available.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.