Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learnable MFCCs for Speaker Verification (2102.10322v1)

Published 20 Feb 2021 in cs.SD, cs.LG, and eess.AS

Abstract: We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allowing the model to be adapted to data flexibly. In practice, we formulate data-driven versions of the four linear transforms of a standard MFCC extractor -- windowing, discrete Fourier transform (DFT), mel filterbank and discrete cosine transform (DCT). Results reported reach up to 6.7\% (VoxCeleb1) and 9.7\% (SITW) relative improvement in term of equal error rate (EER) from static MFCCs, without additional tuning effort.

Citations (15)

Summary

We haven't generated a summary for this paper yet.