Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral formulation of the boundary integral equation method for antiplane problems (2102.10101v3)

Published 16 Feb 2021 in cs.CE, cond-mat.mtrl-sci, and physics.geo-ph

Abstract: A spectral formulation of the boundary integral equation method for antiplane problems is presented. The boundary integral equation method relates the slip and the shear stress at an interface between two half-planes. It involves evaluating a space-time convolution of the shear stress or the slip at the interface. In the spectral formulation, the convolution with respect to the spatial coordinate is performed in the spectral domain. This leads to greater numerical efficiency. Prior work on the spectral formulation of the boundary integral equation method has performed the elastodynamic convolution of the slip at the interface. In the present work, the convolution is performed of the shear stress at the interface. The spectral formulation is developed both for an interface between identical solids and for a bi-material interface. It is validated by numerically calculating the response of the interface to harmonic and to impulsive disturbances and comparing with known analytical solutions. To illustrate use of the method, dynamic slip rupture propagation with a slip-weakening friction law is simulated.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.