Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the advantages of stochastic encoders (2102.09270v2)

Published 18 Feb 2021 in cs.IT, math.IT, and stat.ML

Abstract: Stochastic encoders have been used in rate-distortion theory and neural compression because they can be easier to handle. However, in performance comparisons with deterministic encoders they often do worse, suggesting that noise in the encoding process may generally be a bad idea. It is poorly understood if and when stochastic encoders do better than deterministic encoders. In this paper we provide one illustrative example which shows that stochastic encoders can significantly outperform the best deterministic encoders. Our toy example suggests that stochastic encoders may be particularly useful in the regime of "perfect perceptual quality".

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.