Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speeding Up Private Distributed Matrix Multiplication via Bivariate Polynomial Codes (2102.08304v2)

Published 16 Feb 2021 in cs.IT, cs.CR, cs.DC, and math.IT

Abstract: We consider the problem of private distributed matrix multiplication under limited resources. Coded computation has been shown to be an effective solution in distributed matrix multiplication, both providing privacy against the workers and boosting the computation speed by efficiently mitigating stragglers. In this work, we propose the use of recently-introduced bivariate polynomial codes to further speed up private distributed matrix multiplication by exploiting the partial work done by the stragglers rather than completely ignoring them. We show that the proposed approach reduces the average computation time of private distributed matrix multiplication compared to its competitors in the literature while improving the upload communication cost and the workers' storage efficiency.

Citations (11)

Summary

We haven't generated a summary for this paper yet.