Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Reinforcement Learning in a Continuous State Space with Formal Guarantees (2102.07937v2)

Published 16 Feb 2021 in cs.LG and stat.ML

Abstract: Inverse Reinforcement Learning (IRL) is the problem of finding a reward function which describes observed/known expert behavior. The IRL setting is remarkably useful for automated control, in situations where the reward function is difficult to specify manually or as a means to extract agent preference. In this work, we provide a new IRL algorithm for the continuous state space setting with unknown transition dynamics by modeling the system using a basis of orthonormal functions. Moreover, we provide a proof of correctness and formal guarantees on the sample and time complexity of our algorithm. Finally, we present synthetic experiments to corroborate our theoretical guarantees.

Citations (8)

Summary

We haven't generated a summary for this paper yet.