Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Bayesian reduced rank regression using Langevin Monte Carlo approach (2102.07579v1)

Published 15 Feb 2021 in stat.CO

Abstract: The problem of Bayesian reduced rank regression is considered in this paper. We propose, for the first time, to use Langevin Monte Carlo method in this problem. A spectral scaled Student prior distrbution is used to exploit the underlying low-rank structure of the coefficient matrix. We show that our algorithms are significantly faster than the Gibbs sampler in high-dimensional setting. Simulation results show that our proposed algorithms for Bayesian reduced rank regression are comparable to the state-of-the-art method where the rank is chosen by cross validation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.