Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Accurate Decision Trees with Bandit Feedback via Quantized Gradient Descent

Published 15 Feb 2021 in cs.LG | (2102.07567v3)

Abstract: Decision trees provide a rich family of highly non-linear but efficient models, due to which they continue to be the go-to family of predictive models by practitioners across domains. But learning trees is challenging due to their discrete decision boundaries. The state-of-the-art (SOTA) techniques resort to (a) learning \textit{soft} trees thereby losing logarithmic inference time; or (b) using methods tailored to specific supervised learning settings, requiring access to labeled examples and loss function. In this work, by leveraging techniques like overparameterization and straight-through estimators, we propose a unified method that enables accurate end-to-end gradient based tree training and can be deployed in a variety of settings like offline supervised learning and online learning with bandit feedback. Using extensive validation on standard benchmarks, we demonstrate that our method provides best of both worlds, i.e., it is competitive to, and in some cases more accurate than methods designed \textit{specifically} for the supervised settings; and in bandit settings, where most existing tree learning techniques are not applicable, our models are still accurate and significantly outperform the applicable SOTA methods.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.