Papers
Topics
Authors
Recent
Search
2000 character limit reached

Higher-Order Space-Time Continuous Galerkin Methods for the Wave Equation

Published 15 Feb 2021 in math.NA and cs.NA | (2102.07562v1)

Abstract: We consider a space-time variational formulation of the second-order wave equation, where integration by parts is also applied with respect to the time variable. Conforming tensor-product finite element discretisations with piecewise polynomials of this space-time variational formulation require a CFL condition to ensure stability. To overcome this restriction in the case of piecewise multilinear, continuous ansatz and test functions, a stabilisation is well-known, which leads to an unconditionally stable space-time finite element method. In this work, we generalise this stabilisation idea from the lowest-order case to the higher-order case, i.e. to an arbitrary polynomial degree. We give numerical examples for a one-dimensional spatial domain, where the unconditional stability and optimal convergence rates in space-time norms are illustrated.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.