Papers
Topics
Authors
Recent
2000 character limit reached

Improving Fault Localization by Integrating Value and Predicate Based Causal Inference Techniques (2102.06292v1)

Published 11 Feb 2021 in cs.SE

Abstract: Statistical fault localization (SFL) techniques use execution profiles and success/failure information from software executions, in conjunction with statistical inference, to automatically score program elements based on how likely they are to be faulty. SFL techniques typically employ one type of profile data: either coverage data, predicate outcomes, or variable values. Most SFL techniques actually measure correlation, not causation, between profile values and success/failure, and so they are subject to confounding bias that distorts the scores they produce. This paper presents a new SFL technique, named \emph{UniVal}, that uses causal inference techniques and machine learning to integrate information about both predicate outcomes and variable values to more accurately estimate the true failure-causing effect of program statements. \emph{UniVal} was empirically compared to several coverage-based, predicate-based, and value-based SFL techniques on 800 program versions with real faults.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.