Sur la fonction Delta de Hooley associée à des caractères (2102.06252v2)
Abstract: Let $(f_1,f_2)$ a $2$-tuple of arithmetic functions and $$\Delta_3(n,f_1,f_2):=\sup\limits_{\substack{(u_1,u_2) \in \mathbb{R}{2} \(v_1,v_2) \in [0,1]{2}}}\Big\lvert \sum\limits_{\substack{d_1 d_{2} \mid n \ e{u_i}<d_i\leqslant e{u_i+v_i}}}{f_1(d_1) f_{2}(d_{2})} \Big\rvert{\rm .}$$ In this paper, we give an upper bound of the second moment of $\Delta_3(n,\chi_1,\chi_2)$ when $\chi_1$ and $\chi_2$ are two non principal Dirichlet characters, following methods developed by La Bret`eche and Tenenbaum. This upper bound is a main step for the asymptotic counting of the number of ideals of norm fixed, which will be developped in another article.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.