Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Network with Local Learning Rules for Minor Subspace Analysis (2102.05501v1)

Published 10 Feb 2021 in cs.NE, cs.AI, and q-bio.NC

Abstract: The development of neuromorphic hardware and modeling of biological neural networks requires algorithms with local learning rules. Artificial neural networks using local learning rules to perform principal subspace analysis (PSA) and clustering have recently been derived from principled objective functions. However, no biologically plausible networks exist for minor subspace analysis (MSA), a fundamental signal processing task. MSA extracts the lowest-variance subspace of the input signal covariance matrix. Here, we introduce a novel similarity matching objective for extracting the minor subspace, Minor Subspace Similarity Matching (MSSM). Moreover, we derive an adaptive MSSM algorithm that naturally maps onto a novel neural network with local learning rules and gives numerical results showing that our method converges at a competitive rate.

Citations (1)

Summary

We haven't generated a summary for this paper yet.