Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global jump filters and realized volatility

Published 10 Feb 2021 in math.ST and stat.TH | (2102.05307v2)

Abstract: For a semimartingale with jumps, we propose a new estimation method for integrated volatility, i.e., the quadratic variation of the continuous martingale part, based on the global jump filter proposed by Inatsugu and Yoshida [8]. To decide whether each increment of the process has jumps, the global jump filter adopts the upper $\alpha$-quantile of the absolute increments as the threshold. This jump filter is called global since it uses all the observations to classify one increment. We give a rate of convergence and prove asymptotic mixed normality of the global realized volatility and its variant "Winsorized global volatility". By simulation studies, we show that our estimators outperform previous realized volatility estimators that use a few adjacent increments to mitigate the effects of jumps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.