Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Transformer Language Models for Speech Recognition

Published 9 Feb 2021 in cs.CL | (2102.04754v1)

Abstract: State-of-the-art neural LMs represented by Transformers are highly complex. Their use of fixed, deterministic parameter estimates fail to account for model uncertainty and lead to over-fitting and poor generalization when given limited training data. In order to address these issues, this paper proposes a full Bayesian learning framework for Transformer LM estimation. Efficient variational inference based approaches are used to estimate the latent parameter posterior distributions associated with different parts of the Transformer model architecture including multi-head self-attention, feed forward and embedding layers. Statistically significant word error rate (WER) reductions up to 0.5\% absolute (3.18\% relative) and consistent perplexity gains were obtained over the baseline Transformer LMs on state-of-the-art Switchboard corpus trained LF-MMI factored TDNN systems with i-Vector speaker adaptation. Performance improvements were also obtained on a cross domain LM adaptation task requiring porting a Transformer LM trained on the Switchboard and Fisher data to a low-resource DementiaBank elderly speech corpus.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.