Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rapid Classification of Glaucomatous Fundus Images (2102.04400v1)

Published 8 Feb 2021 in eess.IV, cs.CV, cs.LG, and q-bio.QM

Abstract: We propose a new method for training convolutional neural networks which integrates reinforcement learning along with supervised learning and use ti for transfer learning for classification of glaucoma from colored fundus images. The training method uses hill climbing techniques via two different climber types, viz "random movment" and "random detection" integrated with supervised learning model though stochastic gradient descent with momentum (SGDM) model. The model was trained and tested using the Drishti GS and RIM-ONE-r2 datasets having glaucomatous and normal fundus images. The performance metrics for prediction was tested by transfer learning on five CNN architectures, namely GoogLenet, DesnseNet-201, NASNet, VGG-19 and Inception-resnet-v2. A fivefold classification was used for evaluating the perfroamnace and high sensitivities while high maintaining high accuracies were achieved. Of the models tested, the denseNet-201 architecture performed the best in terms of sensitivity and area under the curve (AUC). This method of training allows transfer learning on small datasets and can be applied for tele-ophthalmology applications including training with local datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.