Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InceptionCaps: A Performant Glaucoma Classification Model for Data-scarce Environment (2312.00803v1)

Published 24 Nov 2023 in cs.CV and cs.LG

Abstract: Glaucoma is an irreversible ocular disease and is the second leading cause of visual disability worldwide. Slow vision loss and the asymptomatic nature of the disease make its diagnosis challenging. Early detection is crucial for preventing irreversible blindness. Ophthalmologists primarily use retinal fundus images as a non-invasive screening method. Convolutional neural networks (CNN) have demonstrated high accuracy in the classification of medical images. Nevertheless, CNN's translation-invariant nature and inability to handle the part-whole relationship between objects make its direct application unsuitable for glaucomatous fundus image classification, as it requires a large number of labelled images for training. This work reviews existing state of the art models and proposes InceptionCaps, a novel capsule network (CapsNet) based deep learning model having pre-trained InceptionV3 as its convolution base, for automatic glaucoma classification. InceptionCaps achieved an accuracy of 0.956, specificity of 0.96, and AUC of 0.9556, which surpasses several state-of-the-art deep learning model performances on the RIM-ONE v2 dataset. The obtained result demonstrates the robustness of the proposed deep learning model.

Summary

We haven't generated a summary for this paper yet.