Distributed Spectrum and Power Allocation for D2D-U Networks: A Scheme based on NN and Federated Learning
Abstract: In this paper, a Device-to-Device communication on unlicensed bands (D2D-U) enabled network is studied. To improve the spectrum efficiency (SE) on the unlicensed bands and fit its distributed structure while ensuring the fairness among D2D-U links and the harmonious coexistence with WiFi networks, a distributed joint power and spectrum scheme is proposed. In particular, a parameter, named as price, is defined, which is updated at each D2D-U pair by a online trained Neural network (NN) according to the channel state and traffic load. In addition, the parameters used in the NN are updated by two ways, unsupervised self-iteration and federated learning, to guarantee the fairness and harmonious coexistence. Then, a non-convex optimization problem with respect to the spectrum and power is formulated and solved on each D2D-U link to maximize its own data rate. Numerical simulation results are demonstrated to verify the effectiveness of the proposed scheme.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.