Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Multi-level Distance Regularization for Deep Metric Learning (2102.04223v1)

Published 8 Feb 2021 in cs.CV

Abstract: We propose a novel distance-based regularization method for deep metric learning called Multi-level Distance Regularization (MDR). MDR explicitly disturbs a learning procedure by regularizing pairwise distances between embedding vectors into multiple levels that represents a degree of similarity between a pair. In the training stage, the model is trained with both MDR and an existing loss function of deep metric learning, simultaneously; the two losses interfere with the objective of each other, and it makes the learning process difficult. Moreover, MDR prevents some examples from being ignored or overly influenced in the learning process. These allow the parameters of the embedding network to be settle on a local optima with better generalization. Without bells and whistles, MDR with simple Triplet loss achieves the-state-of-the-art performance in various benchmark datasets: CUB-200-2011, Cars-196, Stanford Online Products, and In-Shop Clothes Retrieval. We extensively perform ablation studies on its behaviors to show the effectiveness of MDR. By easily adopting our MDR, the previous approaches can be improved in performance and generalization ability.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.