Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Data-to-Text Generation with LM-based Text Augmentation (2102.03556v1)

Published 6 Feb 2021 in cs.CL

Abstract: For many new application domains for data-to-text generation, the main obstacle in training neural models consists of a lack of training data. While usually large numbers of instances are available on the data side, often only very few text samples are available. To address this problem, we here propose a novel few-shot approach for this setting. Our approach automatically augments the data available for training by (i) generating new text samples based on replacing specific values by alternative ones from the same category, (ii) generating new text samples based on GPT-2, and (iii) proposing an automatic method for pairing the new text samples with data samples. As the text augmentation can introduce noise to the training data, we use cycle consistency as an objective, in order to make sure that a given data sample can be correctly reconstructed after having been formulated as text (and that text samples can be reconstructed from data). On both the E2E and WebNLG benchmarks, we show that this weakly supervised training paradigm is able to outperform fully supervised seq2seq models with less than 10% annotations. By utilizing all annotated data, our model can boost the performance of a standard seq2seq model by over 5 BLEU points, establishing a new state-of-the-art on both datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ernie Chang (33 papers)
  2. Xiaoyu Shen (73 papers)
  3. Dawei Zhu (46 papers)
  4. Vera Demberg (48 papers)
  5. Hui Su (38 papers)
Citations (45)