Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Removing biased data to improve fairness and accuracy (2102.03054v1)

Published 5 Feb 2021 in cs.LG, cs.AI, and cs.CY

Abstract: Machine learning systems are often trained using data collected from historical decisions. If past decisions were biased, then automated systems that learn from historical data will also be biased. We propose a black-box approach to identify and remove biased training data. Machine learning models trained on such debiased data (a subset of the original training data) have low individual discrimination, often 0%. These models also have greater accuracy and lower statistical disparity than models trained on the full historical data. We evaluated our methodology in experiments using 6 real-world datasets. Our approach outperformed seven previous approaches in terms of individual discrimination and accuracy.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com