Geometry of Random Cayley Graphs of Abelian Groups
Abstract: Consider the random Cayley graph of a finite Abelian group $G$ with respect to $k$ generators chosen uniformly at random, with $1 \ll \log k \ll \log |G|$. Draw a vertex $U \sim \operatorname{Unif}(G)$. We show that the graph distance $\operatorname{dist}(\mathsf{id},U)$ from the identity to $U$ concentrates at a particular value $M$, which is the minimal radius of a ball in $\mathbb Zk$ of cardinality at least $|G|$, under mild conditions. In other words, the distance from the identity for all but $o(|G|)$ of the elements of $G$ lies in the interval $[M - o(M), M + o(M)]$. In the regime $k \gtrsim \log |G|$, we show that the diameter of the graph is also asymptotically $M$. In the spirit of a conjecture of Aldous and Diaconis (1985), this $M$ depends only on $k$ and $|G|$, not on the algebraic structure of $G$. Write $d(G)$ for the minimal size of a generating subset of $G$. We prove that the order of the spectral gap is $|G|{-2/k}$ when $k - d(G) \asymp k$ and $|G|$ lies in a density-$1$ subset of $\mathbb N$ or when $k - 2 d(G) \asymp k$. This extends, for Abelian groups, a celebrated result of Alon and Roichman (1994). The aforementioned results all hold with high probability over the random Cayley graph.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.